

LQ043T3DX02

TFT-LCD Module

Spec. Issue Date: Dec. 28, 2005

No: LCM-05042

PREPARED BY: DATE SPEC No. LCM-05042 SHARP FILE No. APPROVED BY: DATE ISSUE: December 28, 2005 www.DataSheet4U.com PAGE: 23 pages To · APPLICABLE GROUP LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION Mobile Liquid Crystal Display SMA Customer Group **SPECIFICATION DEVICE SPECIFICATION FOR TFT-LCD** module MODEL No. LQ043T3DX02 CUSTOMER'S APPROVAL DATE **PRESENTED** BY

T. MAKII

Department General manager Engineering Department II Mobile LCD Design Center II

SHARP CORPORATION

MOBILE LIQUID CRYSTAL DISPLAY GROUP

www.DataSheet4U.com

RECORDS OF REVISION

MODEL No : LQ043T3DX02

SPEC No.	Date	NO.	PAGE	SUMMARY	NOTE
LCM-05027	2005.12.28		-	-	1st Issue

		1			

www.DataSheet4U.com

Contents

1. Applicable Scope5
2. General Description ······5
3. Mechanical (Physical) Specifications ······ 5
4. Input Terminal Names and Functions ·······6
5. Absolute Maximum Ratings·······7
6. Electrical Characteristics······8
7.Timing Characteristics of Input Signal······12
8.Input Signal and Display Color······15
9. Optical Characteristics ·······16
10. Handling of Modules ······18
11. Delivery form ······19
12. Reliability Test Conditions ·······20
13. Display Grade ·······20
14. Lot Number Marking······21
15. Others21
16. Outline dimension ······22
17.Packing style23

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ043T3DX02" only.

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT(\underline{T} hin \underline{F} ilm \underline{T} ransistor) It is composed of a color TFT-LCD panel, driver ICs, Input FPC and a back light unit. Graphics and texts can be displayed on a $480\times3\times272$ dots panel with about 16million colors by supplying 24bit data signals (8bit×RGB), Four timing signals, logic (typ. +2.5V), analog (typ. +5V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

Item	Specifications	Unit
Screen size	10.9 (4.3" type) diagonal	cm
Active area	95.04(H)×53.856(V)	mm
	480×272	pixel
Pixel format	1Pixel =R+G+B dots	
Pixel pitch	0.198(H)×0.198(V)	mm
Pixel configuration	R,G,B vertical stripes	
Display mode	Normally black	
Unit outline dimensions	105.5(W)×67.2(H)×3.95(D)	mm
Mass	50	g
Polarizer · Surface treatment	Clear hard coat	

X The above-mentioned table indicates module sizes without some projections and FPC.

4. Input Terminal Names and Functions

Www. 4-1 TFT LCD Panel Driving (Reference Connector : Hirose Electric CO., LTD.Product No.: FH12A-40S-0.5SH(55) Top contact type)

X The Bottom contact type can be selected according to side of mounted connector and terminal side of FPC.

Terminal No.	Terminal name	Function	Remarks
1	GND	GND(0V)	
2	GND	GND(0V)	
3	VCC	+2.5V power source	
4	VCC	+2.5V power source	
5	R0	RED Data Signal (LSB)	
6	R1	RED Data Signal	
7	R2	RED Data Signal	
8	R3	RED Data Signal	
9	R4	RED Data Signal	
10	R5	RED Data Signal	
11	R6	RED Data Signal	
12	R7	RED Data Signal (MSB)	
13	G0	GREEN Data Signal (LSB)	
14	G1	GREEN Data Signal	
15	G2	GREEN Data Signal	
16	G3	GREEN Data Signal	
17	G4	GREEN Data Signal	
18	G5	GREEN Data Signal	
19	G6	GREEN Data Signal	
20	G7	GREEN Data Signal (MSB)	
21	B0	BLUE Data Signal (LSB)	
22	B1	BLUE Data Signal	
23	B2	BLUE Data Signal	
24	B3	BLUE Data Signal	
25	B4	BLUE Data Signal	
26	B5	BLUE Data Signal	
27	B6	BLUE Data Signal	
28	B7	BLUE Data Signal (MSB)	
29	GND	GND(0V)	
30	CK	Clock signal to sample each date	
31	DISP	Display ON/OFF Signal	
32	Hsync	Horizontal synchronizing signal	
33	Vsync	Vertical synchronizing signal	
34	NC	NC	Note 1
35	AVDD	+5V Analog power source	
36	AVDD	+5V Analog power source	
37	NC	NC	Note 1
38	TEST1	TEST1	Note 2
39	TEST2	TEST2	Note 3
40	TEST3	TEST3	Note 3

- *Note 1*) They have been open within FPC.
- Note 2) Please be sure to set 38 pins (TEST1) to open.
- Note 3) Please be sure to connect 39 pin (TEST2) ,40 pin (TEST3) with GND.

4-2. Backlight

0.5mmP 4Pin FPC (Reference Connector :Kyocera Elco Corporation Product No. : 6298 Bottom contact type)

* The Bottom contact type can be selected according to side of mounted connector and terminal side of FPC.

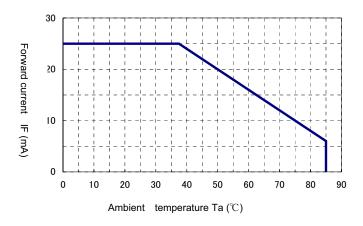
Terminal No.	Signal	Function
1	V _{LED-}	LED Power Source Input terminal (Cathode side)
2	NC	No Connection
3	NC	No Connection
4	V_{LED+}	LED Power Source Input terminal (Anode side)

5. Absolute Maximum Ratings

Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	V _I	Ta=25℃	-0.3 ~ VCC+0.3	V	[Note 1]
2.5 V Power supply voltage	VCC	Ta=25℃	0 ~ +4.5	V	
5 V Power supply voltage	AVDD	Ta=25℃	0 ~ +6.0	V	
Temperature for storage	T _{stg}	_	-25 ∼ +60	$^{\circ}\!\mathbb{C}$	[Note 2]
Temperature for operation	T _{opa}	_	-10 ∼ +50	$^{\circ}\!\mathbb{C}$	[Note 3]
LED Input electric current	ILED	Ta=25℃	25	mA	[Note 4]
LED electricity consumption	PLED	Ta=25℃	100	mW	[Note 4]

[Note 1] CK,R0~R7,G0~G7,B0~B7,Hsync,Vsync,DISP

[Note 2] Humidity: 80%RHMax. ($Ta \le 40^{\circ}$ C)


Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.

[Note 3] Panel surface temperature prescribes.

(Reliability is examined at ambient temperature of 50°C.)

[Note 4] Power consumption of one LED (Ta=25°C) (use LED NESW008B 7pieces)

Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature and the maximum input

6. Electrical Characteristics

6-1 TFT LCD Panel Driving

Ta = 25℃

<u>Lalasheelah Luhi</u>							
	Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
+2.5V	DC voltage	VCC	+2.3	+2.5	+3.3	V	【Note 1】
power supply	DC Current	Icc		1.2	3	mA	[Note 3]
+5V	DC voltage	AVDD	+4.8	+5.0	+5.2	V	[Note 1]
power supply	DC Current	I _{AVDD}		10	18	mA	[Note 3]
Dorminging I	nnut rinnle veltage	VRFVCC			100	mVp-p	Vcc=+2.5V
Permissive i	nput ripple voltage	VRFAVDD			100	mVp-p	Vcc=+5.0V
Input v	oltage (Low)	V _{IL}			0.2 _{V_{CC}}	V	[Note 4]
Input v	oltage (High)	V _{IH}	0.8 V _{CC}			V	[Note 4]
					4.0		V _I =0V
Input o	current (Low)	l _{OL}			4.0	μA	[Note 4]
lmm.ut.a					4.0		V _I =2.5V
Input c	urrent (High)	ІОН			4.0	μA	【Note 4】

X The rush current will flows when power supply is turned on, so please design the power supply circuit referring to [Note 5] (The rush current changes according to the condition of the supply voltage value, rising time and so on.)

[Note 1] Sequences of supply voltage and signals

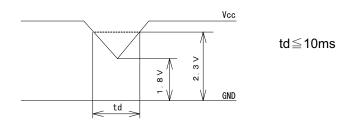
2.3V 2.3V 0.3V 0.3V VCC 4.8V 0.3V **AVDD** t4 CKSignal required domain Hsync,Vsync DATA Min 10frame [Note 2] DISP max.10frame Black mask Black mask usual LCD Display display LCD display display ON processing 9 frame OFF processing 9 frame LED B/L ON/OFF

O Please do not supply AVDD before VCC.

ON

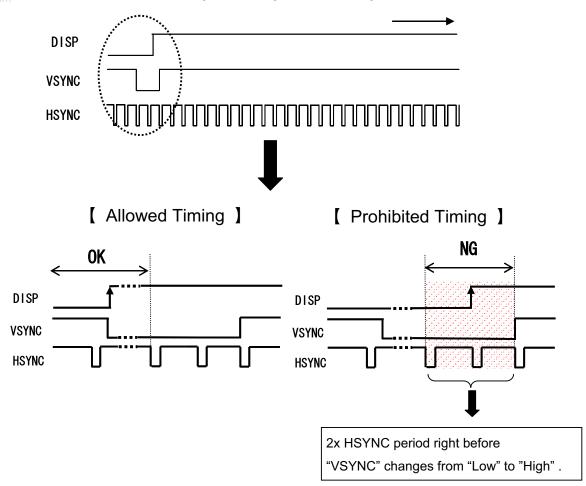
Timing (example)

It discharges and boost up voltage for TFT module on the basis of a DISP-signal It drives Max-10 flames (about 0.2seconds) from change of DISP-signals by reasons that It takes time for 9 flames while each processing operation.


OFF

Therefore, the display start is delayed for 10 flames and Ten or more frames needs to be voltage maintained at the time of a display end.

- Please don't set various signals to Hi-Z when VCC-voltage is supplied in reason that those signals are CMOS input.
- O Don't change DISP signal into the state of H level When AVDD voltage is in the state of GND.
- The ON/OFF timing of LED Back Light is an example.


	MIN	TYP	MAX	unit	Remarks
t1_C	0	_	10	ms	
t1_D	0.5	_	10	ms	
t 2	50	_	_	ms	
t 3	0.5	_	_	ms	[Note 2]
t 4	0	_	_	ms	
t 5	0	_	_	ms	

Dip Conditions for supply voltage

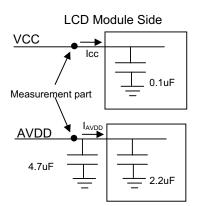
[Note 2] While "VSYNC" is "Low", don't change "DISP" signal "Low" to "High".

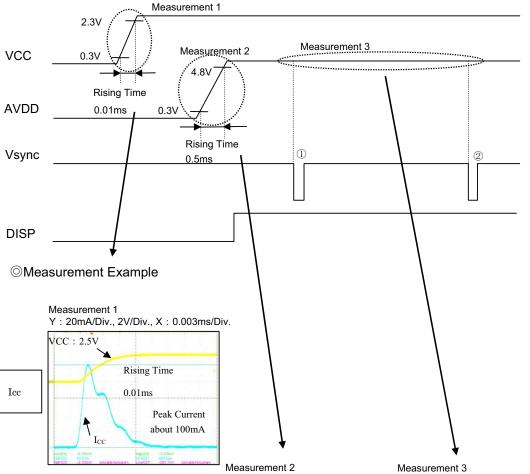
[Note 3] Typical current situation: 256-gray-bar pattern VCC=2.5V AVDD=5.0V

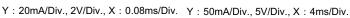
[Note 4] CK, R0 \sim R7, G0 \sim G7,B0 \sim B7,Hsync,Vsync,DISP

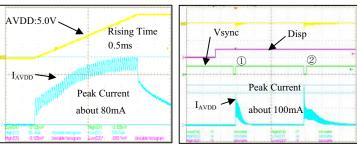
[Note 5]

www.DataSheet4U.An example of rush current measurement


Power supply voltage VCC : 2.5V AVDD : 5.0V


· Disp signal : OFF \Rightarrow ON


Other input signals : GND


· Measurement system : refer to right Fig.

• rush current measurement timing : refer to following Fig.

 I_{AVDD}

These rush current won't flow stationary, these will flow at the timing shown in Measurement 3.

6-2. Back light driving

The back light system has seven LEDs

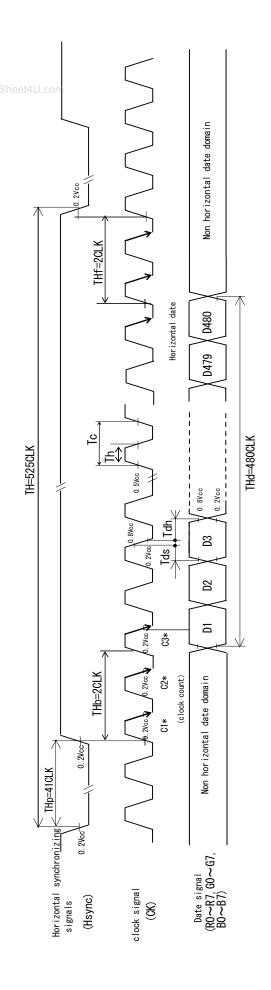
[NESW008B]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V _{BL}	_	_	29.4	V	
Rated Current	ΙL	=	18	20	mA	Ta=25℃

7. Timing characteristics of input signals

An input signal timing waveform is shown in Fig. 2.

7-1 Timing characteristics


Parameter		Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	7.83	9.00	9.26	MHz	
Clock	Duty ratio	Th/T	40	50	60	%	
Data	Set up time	Tds	25	_	_	ns	
Data	Hold time	Tdh	25	_	_	ns	
	Period	TH	_	525	_	Clock	
Horizontal synchronizing	Pulse width	ТНр	_	41	_	Clock	
	Horizontal period	THd	_	480	_	Clock	
	Back porch	THb	_	2	_	Clock	
	Front porch	THf	_	2	_	Clock	
	Period	TV	=	286	_	Line	
	Pulse width	TVp	_	10	_	Line	
Vertical synchronizing	Vertical period	TVd	_	272	_	Line	
	Back porch	TVb	=	2	=	Line	
	Front porch	TVf	_	2	_	Line	

[Note] • In case of using the slow frequency, the deterioration of display, flicker etc may occur.

[•] The timing characteristics are basically fixed as above.

7-2 Timing details

LCM- 05042 Page 13 of 23

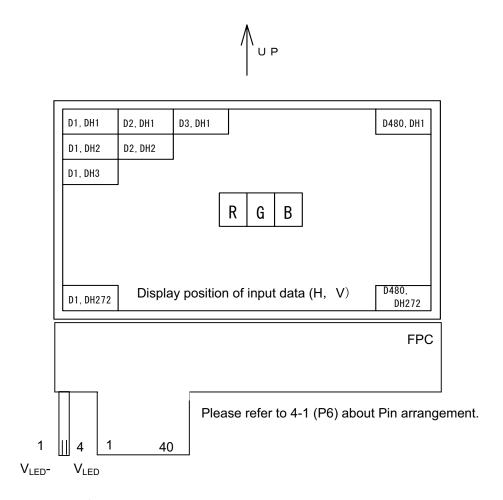



Fig 2 Input signal timing

7-3 Input Data Signals and Display Position on the screen

www.DataSheet4U.com

Please refer to 4-2 about LED side Pin arrangement.

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

vw.Data	Sheet4U. Colors &	com	Date signal																										
	Gray	Gray	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	В3	B4	B5	В6	В7			
_	Scale	Scale	LSB							MSB	LSB							MSB	LSB							MSB			
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
BE	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
Basic Color	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Colo	Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
<u> </u>	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
G	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Scale	仓	→	↓												V							`	L						
e of	Û	→				1								`	ν <u> </u>							`	ν <u></u>						
Red	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
g.	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Gray Scale of Green	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
cale	仓	→				1	•							`	V							`	V						
of G	Û	→				1									ν <u> </u>								ν <u> </u>		0 0 0 0 0 0 0 0 0 0 0 0				
reer	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
<u></u>	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0			
э̀гау	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
Gray Scale Blue	Û	→				1	,							`	V							`	l						
le BI	Û	→				1								`	l _							`	ν <u></u>						
ue	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1			
	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1			
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			

0 : Low level voltage 1 : High level voltage

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of 24 bit data signals, the 16-million-color display can be achieved on the screen.

9. Optical Characteristics

Module characteristics

								
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	021,022	CR>10	_	80	_	Deg.	
angle	Vertical	θ11		_	80	_	Deg.	【Note1,4】
range		θ12		_	80	_	Deg.	
Contrast ratio		CR	θ=0°	100	400	_		【Note2,4】
Response	Rise	Tr	θ=0°	ı	30	45	ms	for a 23
Time	Decay	Тd		ı	30	45	ms	[Note3,4]
Chromaticity of		х		0.246	0.296	0.346		7 33 - 4 3
White		у		0.293	0.343	0.393		[Note4]
Luminance of white		XL1		_	165	_	cd/m²	ILED=18mA
								【Note4】

** The optical characteristics measurements are operated under a stable luminescence(I LED = 18mA) and a dark condition. (refer to Fig.3)

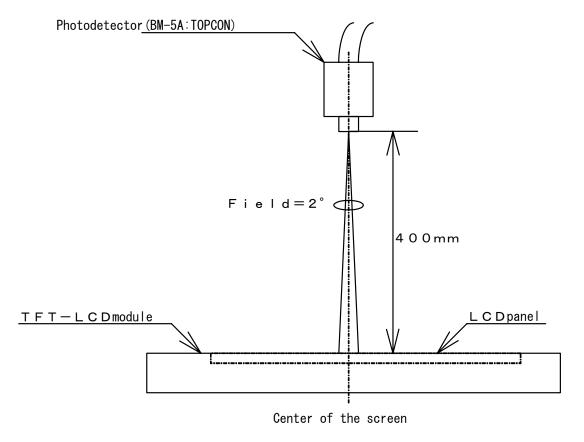
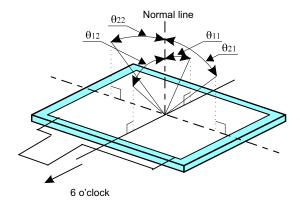
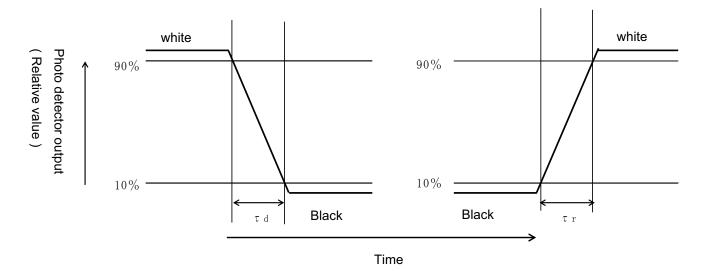



Fig. 3 Optical characteristics measurement method

[Note 1] Definitions of viewing angle range

www.DataSheet4U.com

[Note 2] Definition of contrast ratio


The contrast ratio is defined as the following

Contrast ratio(CR) = Luminance (brightness) with all pixels white

Luminance (brightness) with all pixels black

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white"

[Note 4] This shall be measured at center of the screen.

10. Handling of modules

- 10-1 Inserting the FPC into its connector and pulling it out.
 - ① Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
 - 2 Please insert for too much stress not to join FPC in the case of insertion of FPC.

10-2 About handling of FPC

- ① The bending radius of the FPC should be more than 1.4mm, and it should be bent evenly.
- ② Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

10-3 Mounting of the module

- ① The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- ② Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.

10-4 Cautions in assembly / Handling pre cautions.

As the polarizer can be easily scratched, be most careful in handling it.

- ① Work environments in assembly.
 - Working under the following environments is desirable:
- a) Implement more than 1M Ω conductive treatment (by placing a conductive mat or applying Conductive paint) on the floor or tiles.
- b) No dusts come in to the working room. Place an adhesive, anti-dust mat at the entrance of the room.
- c) Humidity of $50 \sim 70\%$ and temperature of $15 \sim 27\%$ are desirable.
- d) All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.
- e) Use a blower for electrostatic removal. Set it in a direction slightly tilt downward so that each Module can be well subjected to its wind. Set the blower at an optimum distance between the blower and the module.
- 2 How the remove dust on the polarizer
- a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
- b) When the panel surface is soiled, wipe it with soft cloth.
- ③ In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth. If rather difficult, give a breath on the metal part to clean better.
- ④ If a water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- ⑤ As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- ⑤ Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

10-5 Others

① Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.

You are requested to store under the following conditions:

(Environmental conditions of temperature/humidity for storage)

(1) Temperature: 0~40°C

(2) Relative humidity: 95% or less

 As average values of environments (temperature and humidity) for storing, use the following control guidelines:

Summer season: $20\sim35^{\circ}$ C, 85% or less Winter season: $5\sim15^{\circ}$ C, 85% or less

- If stored under the conditions of 40°C and 95% RH, cumulative time of storage must be less than 240 hours.
- ② If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- ③ If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- ④ If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- ⑤ Be sure to observe other caution items for ordinary electronic parts and components.

11. Delivery Form

11-1 . Carton storage conditions

1) Carton piling-up: Max 8 rows

2) Environments

Temperature: 0~40°C

Humidity: 65% RH or less (at 40°C)

There should be no dew condensation even at a low temperature and high humidity.

3)Packing form: As shown in Figure 4.

*Cartons are weak against damp, and they are apt to be smashed easily due to the compressive pressure applied when piled up. The above environmental conditions of temperature and humidity are set in consideration of reasonable pile-up for storage.

11-2. Packing composition

Name	quantity	Note			
Carton size	1	575×360×225 (mm)			
Tray	12	Material : Electrification prevention polypropylene			
(The number of Module)		8 unit / tray:80unit/carton			
Electrification	2	Material : Electrification prevention polyethylene			
prevention bag		680mm(length)×500mm(depth)×50µm(thin)			

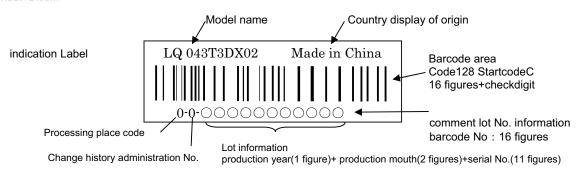
Carton weight (80unit):8kg

12. Reliability test items

No.	Test item	Conditions		
DalaSi	High temperature storage test	Ta = 60°C 240h		
2	Low temperature storage test	Ta = -25℃ 240h		
3	High temperature & high humidity operation test	Ta = 40°C ; 95%RH 240h (No condensation)		
4	High temperature operation test	Ta = 50° C 240h (The panel temp. must be less than 50° C)		
5	Low temperature operation test	Ta = -10℃ 240h		
6	Vibration test (non- operating)	Frequency: 10~55Hz/Vibration width (one side): 1.5mm Sweep time: 1minutes Test period: (2 hours for each direction of X,Y,Z)		
7	Shock test	Direction: ±X, ±Y, ±Z, Time: Third for each direction. Impact value: 100G Action time 6ms		
8	Thermal shock test	Ta=-25°C∼60°C /10 cycles (30 min) (30min)		

[Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.


13. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

14. Lot No. marking

The lot No. will be indicated on individual labels. The location is as shown

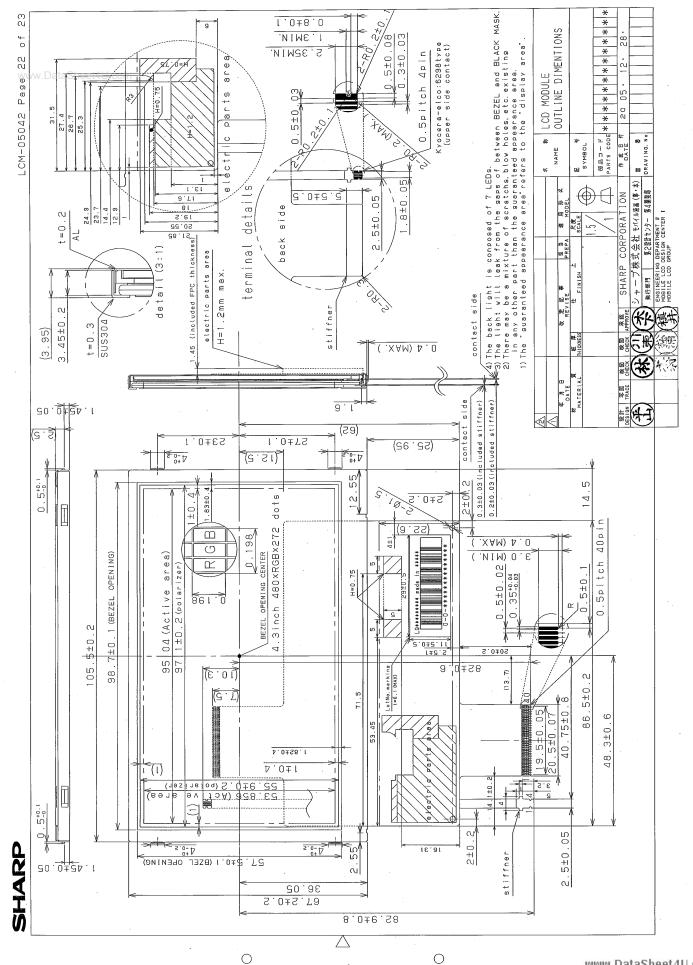
outward form : width 29.0 ± 0.5 mm length 11.5 ± 0.5 mm

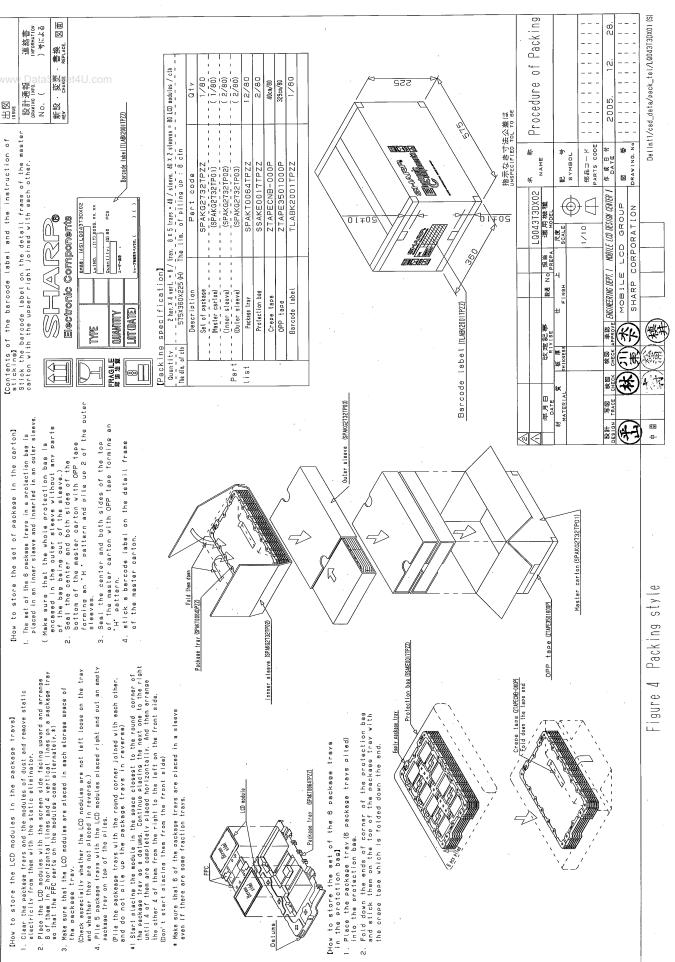
comment column:

1 figure Processing place code [0] WSEC Wuxi Factory

[1] WSEC Lianyungang Factory

2 figure Change history administration No. [0]


3 figure Production year


4, 5figure Production month

6 -16 figures Serial No.

15. Others

- 1 Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2 Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3 If you pressed down a liquid crystal display screen with your finger and so on, the alignment disorder of liquid crystal will occur. And then It will become display fault.
 - Therefore, Be careful not to touch the screen directly, and to consider not stressing to it.
- 4 If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

www.sharpsma.com

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:**

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 13B1, Tower C,
Electronics Science & Technology Building
Shen Nan Zhong Road

Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819